Model Predictive Control
Reachability and Invariance

F. Borrelli*, M. Morari, C. Jones†

*UC Berkeley
Institut für Automatik
ETH Zürich
† EPFL

Fall Semester 2014 (revised September 2014)

Table of Contents

1. Polyhedra and Polytopes
 1.1 General Set Definitions and Operations
 1.2 Basic Operations on Polytopes

2. Reachable Sets
 2.1 Pre and Reach Sets Definition
 2.2 Pre and Reach Sets Computation
 2.3 Controllable Sets
 2.4 N-Step Reachable Sets

3. Invariant Sets
 3.1 Invariant Sets
 3.2 Control Invariant Sets
1. Polyhedra and Polytopes
 1.1 General Set Definitions and Operations
 1.2 Basic Operations on Polytopes

2. Reachable Sets

3. Invariant Sets
Definitions (Polyhedra and polytopes)

A **polyhedron** is the intersection of a *finite* number of closed halfspaces:

\[Z = \{ z \mid a_1^\top z \leq b_1, a_2^\top z \leq b_2, \ldots, a_m^\top z \leq b_m \} = \{ z \mid Az \leq b \} \]

where \(A := [a_1, a_2, \ldots, a_m]^\top \) and \(b := [b_1, b_2, \ldots, b_m]^\top \).

A **polytope** is a *bounded* polyhedron.

Polyhedra and polytopes are always convex.

General Set Definitions and Operations

- An *n*-dimensional ball \(B(x_0, \rho) \) is the set \(B(x_0, \rho) = \{ x \in \mathbb{R}^n \mid \sqrt{\|x - x_0\|^2} \leq \rho \} \). \(x_0 \) and \(\rho \) are the center and the radius of the ball, respectively.

- The convex combination of \(x_1, \ldots, x_k \) is defined as the point \(\lambda_1 x_1 + \ldots + \lambda_k x_k \) where \(\sum_{i=1}^k \lambda_i = 1 \) and \(\lambda_i \geq 0, \ i = 1, \ldots, k \).

- The convex hull of a set \(K \subseteq \mathbb{R}^n \) is the set of all convex combinations of points in \(K \) and it is denoted as \(\text{conv}(K) \):

\[
\text{conv}(K) \triangleq \{ \lambda_1 x_1 + \ldots + \lambda_k x_k \mid x_i \in K, \ \lambda_i \geq 0, \ i = 1, \ldots, k, \
\sum_{i=1}^k \lambda_i = 1 \}.
\]
1. Polyhedra and Polytopes

1.1 General Set Definitions and Operations

Polyhedra Representations

An \mathcal{H}-polyhedron \mathcal{P} in \mathbb{R}^n denotes an intersection of a finite set of closed halfspaces in \mathbb{R}^n:

$$\mathcal{P} = \{ x \in \mathbb{R}^n : Ax \leq b \}$$

In Matlab: $\mathcal{P} = \text{Polytope}(A,b)$

A two-dimensional \mathcal{H}-polyhedron

Inequalities which can be removed without changing the polyhedron are called redundant. The representation of an \mathcal{H}-polyhedron is minimal if it does not contain redundant inequalities.

Polyhedra Representations

- A \mathcal{V}-polytope \mathcal{P} in \mathbb{R}^n is defined as
 $$\mathcal{P} = \text{conv}(V)$$
 for some $V = [V_1, \ldots, V_k] \in \mathbb{R}^{n \times k}$.
- Any \mathcal{H}-polytope is a \mathcal{V}-polytope and viceversa.
- A polytope $\mathcal{P} \subset \mathbb{R}^n$, is full-dimensional if it is possible to fit a non-empty n-dimensional ball in \mathcal{P}
- If $\|A_i\|_2 = 1$, where A_i denotes the i-th row of a matrix A, we say that the polytope \mathcal{P} is normalized.
Polyhedra Representations

- The faces of dimension 0 and 1 are called vertices and edges, respectively.

![V-representation](image1.png) ![H-representation](image2.png)

(a) V-representation. (b) H-representation.

Polytopal Complexes

A set $\mathcal{C} \subseteq \mathbb{R}^n$ is called a P-collection (in \mathbb{R}^n) if it is a collection of a finite number of n-dimensional polytopes, i.e.

$$\mathcal{C} = \{C_i\}_{i=1}^{N_C},$$

where $C_i := \{x \in \mathbb{R}^n : C_i^x x \leq C_i^c\}$, $\dim(C_i) = n$, $i = 1, \ldots, N_C$, with $N_C < \infty$.

In Matlab: $Q = [P1, P2, P3]$, $R = [P4, Q, [P5, P6], P7]$
Functions on Polytopal Complexes

- A function $h(\theta) : \Theta \rightarrow \mathbb{R}^k$, where $\Theta \subseteq \mathbb{R}^s$, is piecewise affine (PWA) if there exists a strict partition R_1, \ldots, R_N of Θ and $h(\theta) = H^i \theta + k^i$, $\forall \theta \in R_i$, $i = 1, \ldots, N$.

- A function $h(\theta) : \Theta \rightarrow \mathbb{R}^k$, where $\Theta \subseteq \mathbb{R}^s$, is piecewise affine on polyhedra (PPWA) if there exists a strict polyhedral partition R_1, \ldots, R_N of Θ and $h(\theta) = H^i \theta + k^i$, $\forall \theta \in R_i$, $i = 1, \ldots, N$.

- A function $h(\theta) : \Theta \rightarrow \mathbb{R}$, where $\Theta \subseteq \mathbb{R}^s$, is piecewise quadratic (PWQ) if there exists a strict partition R_1, \ldots, R_N of Θ and $h(\theta) = \theta' H^i \theta + k^i \theta + l^i$, $\forall \theta \in R_i$, $i = 1, \ldots, N$.

- A function $h(\theta) : \Theta \rightarrow \mathbb{R}$, where $\Theta \subseteq \mathbb{R}^s$, is piecewise quadratic on polyhedra (PPWQ) if there exists a strict polyhedral partition R_1, \ldots, R_N of Θ and $h(\theta) = \theta' H^i \theta + k^i \theta + l^i$, $\forall \theta \in R_i$, $i = 1, \ldots, N$.

Table of Contents

1. Polyhedra and Polytopes
 1.1 General Set Definitions and Operations
 1.2 Basic Operations on Polytopes
Basic Operations on Polytopes

- Convex Hull of a set of points \(V = \{ V_i \}_{i=1}^{N_V} \), with \(V_i \in \mathbb{R}^n \),

\[
\text{conv}(V) = \{ x \in \mathbb{R}^n : x = \sum_{i=1}^{N_V} \alpha_i V_i, \ 0 \leq \alpha_i \leq 1, \ \sum_{i=1}^{N_V} \alpha_i = 1 \}. \quad (1)
\]

In Matlab: \(P = \text{hull}(V) \), \(V \) matrix containing vertices of the polytope \(P \)

- Vertex Enumeration of a polytope \(P \) given in \(H \)-representation. (dual of the convex hull operation)

 In Matlab: \(V = \text{extreme}(P) \)

 Used to switch from a \(V \)-representation of a polytope to an \(H \)-representation.

- Polytope reduction is the computation of the minimal representation of a polytope. A polytope \(P \subset \mathbb{R}^n \), \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) is in a minimal representation if the removal of any row in \(Ax \leq b \) would change it (i.e., if there are no redundant constraints).

 In Matlab: \(P = \text{Polytope}(A,b,\text{normal},\text{minrep}) \), \(\text{minrep}=1 \)

- The Chebychev Ball of a polytope \(P \) corresponds to the largest radius ball \(B(x_c, R) \) with center \(x_c \), such that \(B(x_c, R) \subset P \).

 In Matlab: \(P.xCheb, P.rCheb \)
Basic Operations on Polytopes

- **Projection**
 Given a polytope \(\mathcal{P} = \{ [x^T y^T]^T \in \mathbb{R}^{n+m} : A^T x + A^y y \leq b \} \subset \mathbb{R}^{n+m} \) the projection onto the \(x \)-space \(\mathbb{R}^n \) is defined as

\[
\text{proj}_x(\mathcal{P}) := \{ x \in \mathbb{R}^n | \exists y \in \mathbb{R}^m : A^T x + A^y y \leq b \}.
\]

In Matlab: \(Q = \text{projection}(P, \text{dim}) \)

Affine Mappings and Polyhedra

- Consider a polyhedron \(\mathcal{P} = \{ x \in \mathbb{R}^n | Hx \leq k \} \), with \(H \in \mathbb{R}^{np \times n} \) and an affine mapping \(f(z) \)

\[
f : z \in \mathbb{R}^n \mapsto Az + b, \quad A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n
\]

- Define the composition of \(\mathcal{P} \) and \(f \) as the following polyhedron

\[
\mathcal{P} \circ f \triangleq \{ z \in \mathbb{R}^n | Hf(z) \leq k \} = \{ z \in \mathbb{R}^m | HAz \leq k - Hb \}
\]

- Useful for backward-reachability
Affine Mappings and Polyhedra

Consider a polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n \mid Hx \leq k\}$, with $H \in \mathbb{R}^{np \times n}$ and an affine mapping $f(z)$

$$f : z \in \mathbb{R}^n \mapsto Az + b, \ A \in \mathbb{R}^{n \times n}, \ b \in \mathbb{R}^n$$

Define the composition of f and \mathcal{P} as the following polyhedron

$$f \circ \mathcal{P} \triangleq \{ y \in \mathbb{R}^n \mid y = Ax + b \ \forall x \in \mathbb{R}^n, \ Hx \leq k \}$$

The polyhedron $f \circ \mathcal{P}$ in can be computed as follows. Write \mathcal{P} in V-representation $\mathcal{P} = \text{conv}(V)$ and map the vertices $V = \{V_1, \ldots, V_k\}$ through the transformation f. Because the transformation is affine, the set $f \circ \mathcal{P}$ is the convex hull of the transformed vertices

$$f \circ \mathcal{P} = \text{conv}(F), \ F = \{AV_1 + b, \ldots, AV_k + b\}.$$

Useful for forward-reachability
Set Definition

We consider the following two types of systems autonomous systems:

$$x(t+1) = f_a(x(t)),$$

(2)

and systems subject to external inputs:

$$x(t+1) = f(x(t), u(t)).$$

(3)

Both systems are subject to state and input constraints

$$x(t) \in \mathcal{X}, \ u(t) \in \mathcal{U}, \ \forall \ t \geq 0.$$

The sets \mathcal{X} and \mathcal{U} are polyhedra and contain the origin in their interior.
Reach Set Definition

For the autonomous system (2) we denote the one-step reachable set as

\[\text{Reach}(S) \triangleq \{ x \in \mathbb{R}^n : \exists x(0) \in S \text{ s.t. } x = f_a(x(0)) \} \]

For the system (3) with inputs we denote the one-step reachable set as

\[\text{Reach}(S) \triangleq \{ x \in \mathbb{R}^n : \exists x(0) \in S, \exists u(0) \in U \text{ s.t. } x = f(x(0), u(0)) \} \]

Pre Set Definition

“Pre” sets are the dual of one-step reachable sets. The set

\[\text{Pre}(S) \triangleq \{ x \in \mathbb{R}^n : f_a(x) \in S \} \]

defines the set of states which evolve into the target set \(S \) in one time step for the system (2).

Similarly, for the system (3) the set of states which can be driven into the target set \(S \) in one time step is defined as

\[\text{Pre}(S) \triangleq \{ x \in \mathbb{R}^n : \exists u \in U \text{ s.t. } f(x, u) \in S \} \]
Pre Set Computation - Autonomous Systems

Assume the system is linear and autonomous

\[x(t + 1) = Ax(t) \]

Let

\[S = \{ x : Hx \leq h \}, \]

Then the set \(\text{Pre}(S) \) is

\[\text{Pre}(S) = \{ x : HAx \leq h \} \]

Note that by using polyhedral notation, the set \(\text{Pre}(S) \) is simply \(S \circ A \).
Reach Set Computation - Autonomous Systems

The set $\text{Reach}(S)$ is obtained by applying the map A to the set S. Write S in V-representation

$$S = \text{conv}(V) \quad (5)$$

and map the set of vertices V through the transformation A. Because the transformation is linear, the reach set is simply the convex hull of the transformed vertices

$$\text{Reach}(S) = A \circ S = \text{conv}(AV) \quad (6)$$

Pre Set Computation - System with Inputs

Consider the system

$$x(t+1) = Ax(t) + Bu(t)$$

Let

$$S = \{x \mid Hx \leq h\}, \quad U = \{u \mid H_u u \leq h_u\}, \quad (7)$$

The Pre set is

$$\text{Pre}(S) = \left\{ x \in \mathbb{R}^n \mid \exists u \in \mathbb{R} \text{ s.t.} \begin{bmatrix} HA & HB \\ 0 & H_u \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \leq \begin{bmatrix} h \\ h_u \end{bmatrix} \right\}$$

which is the projection onto the x-space (with dimension \mathbb{R}^n) of the polyhedron

$$\mathcal{T} := \left\{ \begin{bmatrix} HA & HB \\ 0 & H_u \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \leq \begin{bmatrix} h \\ h_u \end{bmatrix} \right\}.$$

In Matlab: $Q = \text{projection}(\mathcal{T}, n)$
2. Reachable Sets
2.1 Pre and Reach Sets Definition
2.2 Pre and Reach Sets Computation
2.3 Controllable Sets
2.4 N-Step Reachable Sets

Controllable Sets

Definition (N-Step Controllable Set $\mathcal{K}_N(\mathcal{O})$)

For a given target set $\mathcal{O} \subseteq \mathcal{X}$, the N-step controllable set $\mathcal{K}_N(\mathcal{O})$ is defined as:

$$\mathcal{K}_N(\mathcal{O}) \triangleq \text{Pre}(\mathcal{K}_{N-1}(\mathcal{O})) \cap \mathcal{X}, \quad \mathcal{K}_0(\mathcal{O}) = \mathcal{O}, \quad N \in \mathbb{N}^+.$$

All states $x_0 \in \mathcal{K}_N(\mathcal{O})$ can be driven, through a time-varying control law, to the target set \mathcal{O} in N steps, while satisfying input and state constraints.

Definition (Maximal Controllable Set $\mathcal{K}_\infty(\mathcal{O})$)

For a given target set $\mathcal{O} \subseteq \mathcal{X}$, the maximal controllable set $\mathcal{K}_\infty(\mathcal{O})$ for the system $x(t+1) = f(x(t), u(t))$ subject to the constraints $x(t) \in \mathcal{X}$, $u(t) \in \mathcal{U}$ is the union of all N-step controllable sets contained in \mathcal{X} ($N \in \mathbb{N}$).
2. Reachable Sets

2.1 Pre and Reach Sets Definition

2.2 Pre and Reach Sets Computation

2.3 Controllable Sets

2.4 N-Step Reachable Sets

N-Step Reachable Sets

Definition (N-Step Reachable Set $\mathcal{R}_N(\mathcal{X}_0)$)

For a given initial set $\mathcal{X}_0 \subseteq \mathcal{X}$, the N-step reachable set $\mathcal{R}_N(\mathcal{X}_0)$ is

$$\mathcal{R}_{i+1}(\mathcal{X}_0) \triangleq \text{Reach} (\mathcal{R}_i(\mathcal{X}_0)), \quad \mathcal{R}_0(\mathcal{X}_0) = \mathcal{X}_0, \quad i = 0, \ldots, N - 1$$

All states $x_0 \in \mathcal{X}_0$ can will evolve to the N-step reachable set $\mathcal{R}_N(\mathcal{X}_0)$ in N steps

Same definition of Maximal Reachable Set $\mathcal{R}_\infty(\mathcal{X}_0)$ can be introduced.
Outline

1. Polyhedra and Polytopes

2. Reachable Sets

3. Invariant Sets
 3.1 Invariant Sets
 3.2 Control Invariant Sets

Table of Contents

3. Invariant Sets
 3.1 Invariant Sets
 3.2 Control Invariant Sets
Invariant Sets

Invariant sets

- are computed for autonomous systems
- for a given feedback controller \(u = g(x) \), provide the set of initial states whose trajectory will never violate the system constraints.

Definition (Positive Invariant Set)

A set \(O \subseteq X \) is said to be a positive invariant set for the autonomous system \(x(t + 1) = f_a(x(t)) \) subject to the constraints \(x(t) \in \mathcal{X} \), if

\[
x(0) \in O \implies x(t) \in O, \quad \forall t \in \mathbb{N}^+
\]

Definition (Maximal Positive Invariant Set \(O_\infty \))

The set \(O_\infty \) is the maximal invariant set if \(O_\infty \) is invariant and \(O_\infty \) contains all the invariant sets contained in \(\mathcal{X} \).

Algorithm

Input: \(f_a, \mathcal{X} \)
Output: \(O_\infty \)

1. let \(\Omega_0 = \mathcal{X} \),
2. let \(\Omega_{k+1} = \text{Pre}(\Omega_k) \cap \Omega_k \)
3. if \(\Omega_{k+1} = \Omega_k \) then \(O_\infty \leftarrow \Omega_{k+1} \)
4. else go to 2

The algorithm generates the set sequence \(\{ \Omega_k \} \) satisfying \(\Omega_{k+1} \subseteq \Omega_k \), \(\forall k \in \mathbb{N} \) and it terminates when \(\Omega_{k+1} = \Omega_k \) so that \(\Omega_k \) is the maximal positive invariant set \(O_\infty \) for \(x(t + 1) = f_a(x(t)) \).
Control Invariant Sets

Control invariant sets

- are computed for systems *subject to external inputs*
- provide the set of initial states for which *there exists* a controller such that the system constraints are never violated.

Definition (Control Invariant Set)

A set $\mathcal{C} \subseteq \mathcal{X}$ is said to be a control invariant set if

$$x(t) \in \mathcal{C} \implies \exists u(t) \in \mathcal{U} \text{ such that } f(x(t), u(t)) \in \mathcal{C}, \quad \forall t \in \mathbb{N}^+$$

Definition (Maximal Control Invariant Set \mathcal{C}_∞)

The set \mathcal{C}_∞ is said to be the maximal control invariant set for the system $x(t + 1) = f(x(t), u(t))$ subject to the constraints in $x(t) \in \mathcal{X}, \ u(t) \in \mathcal{U}$, if it is control invariant and contains all control invariant sets contained in \mathcal{X}.
Control Invariant Sets

Same geometric condition for control invariants holds: C is a control invariant set if and only if

$$C \subseteq \text{Pre}(C)$$ \hspace{1cm} (8)

Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>let $\Omega_0 = \mathcal{X}$,</td>
</tr>
<tr>
<td>2</td>
<td>let $\Omega_{k+1} = \text{Pre}(\Omega_k) \cap \Omega_k$</td>
</tr>
<tr>
<td>3</td>
<td>if $\Omega_{k+1} = \Omega_k$ then $C_\infty \leftarrow \Omega_{k+1}$</td>
</tr>
<tr>
<td>4</td>
<td>else go to 2</td>
</tr>
</tbody>
</table>

The algorithm generates the set sequence $\{\Omega_k\}$ satisfying $\Omega_{k+1} \subseteq \Omega_k$, $\forall k \in \mathbb{N}$ and it terminates if $\Omega_{k+1} = \Omega_k$ so that Ω_k is the maximal control invariant set C_∞ for the constrained system.

Invariant Sets and Control Invariant Sets

- The set \mathcal{O}_∞ (C_∞) is **finitely determined** if and only if $\exists i \in \mathbb{N}$ such that $\Omega_{i+1} = \Omega_i$.
- The smallest element $i \in \mathbb{N}$ such that $\Omega_{i+1} = \Omega_i$ is called the **determinedness index**.
- For all states contained in the maximal control invariant set C_∞ there exists a control law, such that the system constraints are never violated.